WEIGHTED COMPOSITION OPERATORS ON THE MINIMAL MÖBIUS INVARIANT SPACE
نویسندگان
چکیده
منابع مشابه
Fredholm Weighted Composition Operators on Dirichlet Space
Let H be a Hilbert space of analytic functions on the unit disk D. For an analytic function ψ on D, we can define the multiplication operator Mψ : f → ψf, f ∈ H. For an analytic selfmapping φ of D, the composition operator Cφ defined on H as Cφf f ◦ φ, f ∈ H. These operators are two classes of important operators in the study of operator theory in function spaces 1–3 . Furthermore, for ψ and φ,...
متن کاملOn reducibility of weighted composition operators
In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...
متن کاملNormal and isometric weighted composition operators on the Fock space
We obtain new and simple characterizations for the boundedness and compactness of weighted composition operators on the Fock space over C. We also describe all weighted composition operators that are normal or isometric.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2014
ISSN: 1015-8634
DOI: 10.4134/bkms.2014.51.4.1187